HE P L KEF

The Chinese University of Hong Kong

CENG3430 Rapid Prototyping of Digital Systems
Lecture 05:

Finite State Machine

Ming-Chang YANG
mcyang@cse.cuhk.edu.hg

e
. ! RS 5. el
TR T e
*ig%m.é i:l ! """"::' e £
— \ 'j — 4"’*""""4“‘;'
== N smmiemneie Sl
] Hl |
p— w\'] bbbbbbbbb
e " I|
L
¥

mailto:mcyang@cse.cuhk.edu.hk

Recall: Combinational vs. Sequential _

R S

« Combinational Circuit: no memory

@ Outputs are a function of the present inputs only.

@ Rule: Use either concurrent or sequential statements.
« Sequential Circuit: has memory

@ Outputs are a function of the present inputs and the
previous outputs (i.e., the internal state).

@ Rule: Must use sequential (i.e., process) statements.

Sequential Circuit

External > o > External
Inputs Comb_lnatllonal Outputs
> Circuit —_—

Internal Inputs Internal Outputs

(Present State) (Next State)

Memory <€——

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

5{%

Recall: Typical Processor Organizatios:

Processor

Control Unit

(Decoder,
State Machine)

A_LU Registers
(MUltlplexer, (FIlp-ﬂOpS)
State Machine)
Address Bus Data Bus
(Latches) (Bi-directional Bus)

!

L

Memory

How to maintain the internal state explicitly?

&

‘I'-

Outline

* Finite State Machine (FSM)

— Clock Edge Detection
« “if” statement vs. “wait until” statement
* rising edge (CLK) VvS. CLK'event

— Direct Feedback Path

* Types of FSM
— Moore vs. Mealy

« Examples of FSM
— Up/Down Counter
— Pattern Generator

CENG3430 LecO05: Finite State Machines 4

Finite State Machine (FSM)

* Finite State Machine (FSM): A system jumps from
one state to another:
— Within a pool of finite states, and
— Upon clock edges and/or input transitions.

« Example of FSM: traffic light, digital watch, CPU, etc.

j*]

&)

tuner tuner

) () (1)

tuner

* Two crucial factors: time (clock edge) and state (feedback)

CENG3430 LecO05: Finite State Machines 5

9]
B

Outline

— Clock Edge Detection
« “if” statement vs. “wait until” statement
* rising edge (CLK) VvS. CLK'event

CENG3430 LecO05: Finite State Machines 6

Clock Edge Detection

 Both "'wait until” and "if” statements can be
used to detect the clock edge (e.g., CLK):

e “wait until” statement:

—wait until CLK = '1"';
—wait until CLK = '0"';

e “j f” statement:
— 1f CLK'event and CLK
— 1f CLK'event and CLK

—-— rising edge

-— falling edge

OR

- 1f(rising edge (CLK)
- 1f(falling edge (CLK)

CENG3430 LecO05: Finite State Machines

)

)

'"l' —-- rising edge

'O' —-- falling edge

—-— rising edge

—-— falling edge

rising edge (CLK) VS. CLK'event

- rising edge () function in std_logic_1164 library

FUNCTION rising edge (SIGNAL s : std ulogic) RETURN BOOLEAN IS
BEGIN N
RETURN (s'EVENT AND (To X0l(s) = '1') AND
(To X01(s'LAST VALUE) = '0"));
END; e esesecesSmssssesesse:

— It results TRUE when there is an edge transition in the signal
s, the present value is '1' and the last value is '0'.

— If the last value is something like 'z' or 'U', it returns a FALSE.

 The statement (clk'event and clk='1")

— It results TRUE when the there is an edge transition in the
clk and the present value is 1"

— It does not see whether the last value is '0' or not.

Use rising edge() / falling edge () with “if” statements!

When to use “wait until” or “if”? (1/2)

« Synchronous Process: Computes values only on
clock edges (i.e., only sensitive/sync. to clock signal).

— Rule: Use “wait-until” or “i£” for synchronous process:
process < NO sensitivity list implies that there is one clock signal.
begin

wait until clk="l";< The first statement must be wait until.

Usage
of

“wait
until”end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)< The clock signal must be in the sensitivity list.

begin
Usage
of
;£ if (rising_edge (clk)) < NOT necessary to be the first line.

end process 9

When to use “wait until” or “if”’? (2/2)

 Asynchronous Process: Computes values on clock
edges or when asynchronous conditions are TRUE.

— That Is, it must be sensitive to the clock signal (if any), and
to all inputs that may affect the asynchronous behavior.

— Rule: Only use “i£” for asynchronous process:

process (clk, input a, input b, ..) & The sensitivity list

begin should include the
Usage clock signal, and all
of inputs that may affect

“s g9 if(rising edge(clk))
1

asynchronous behavior.

end process

Simply use “if” statements for both sync. and async. processes!

Outline
* Finite State Machine (FSM)

— Direct Feedback Path

CENG3430 LecO05: Finite State Machines 11

Feed-forward and Feedback Paths

« So far, we mostly focus on logic with feed-forward (or
open-loop) pat

1S.
g

—>§)—>Contro|ler]—>[Plant]—»O—>
_ |

* Now, we are going to learn feedback (or closed-loop)
paths—the key step of making a finite state machine.

CENG3430 LecO05: Finite State Machines 12

Direct Feedback Path

library IEEE;

use IEEE.STD LOGIC 1164.ALL; L
entity feedback 1 is a-| D Q¢
port (a,clk,reset: 1in std logic; clk —b
c: buffer std logic); :
end feedback 1; reset
architecture feedback 1 arch of feedback 1 1is
begin
process (clk, reset) —- async.
begin
if reset = '1l' then ¢ <= '0';

elsif rising edge(clk) then
c <= not(a and c); ® Signal c forms a closed loop.

end 1f; * not(a and c¢) takes effect at
end process; the next rising clock edge.
end feedback 1 arch : - The current ¢ holds for one cycle.

6“ ___n - . .
CENG3430 Lec05: Finite State Machines @ =18 Ilke a ﬂlp ﬂOp 13

Internal Feedback: inout or buffer

* Recall (LecOl): There are 4 modes of 1/O pins:
1) in: Data flows in only
2) out: Data flows out only (cannot be read back by the entity)
3) inout: Data flows bi-directionally (i.e., in or out)
4) buffer: Similar to out but it can be read back by the entity

A (in) D D (out)

[

— read back E (buffer)
B (in) T F (inout)

C (in)
1 ;:G(out)

« Both buffer and inout can be read back internally.

— Inout can also read external input signals.
CENG3430 LecO05: Finite State Machines 14

Outline

* Types of FSM
— Moore vs. Mealy

CENG3430 LecO05: Finite State Machines 15

Types of Finite State Machines

« Moore Machine: Mealy Machine:
— Outputs are a function of — Outputs are a function of
the present state only. the present state and

the present inputs

(o
Reset ® Rese
ot | 1 o0t | 11
/
/

Q 1 output Q 1/1

Suggestion: Maintain the internal state explicitly!

Moore Machine

* Moore Machine: outputs rely on present state only.
architecture moore arch of fsm 1s

signal s: bit; —-- internal state
begin
process (s) Combinational Logic
begin
OUTX <= not s; —-- output
end process;
process (CLOCK, RESET) Sequential Logic
begin
1f RESET = 'l' then s <= '0"';
elsif rising edge (CLOCK) then
s <= not (INX and s); -- feedback
end 1f;
end process;

CEN&%QLG%&Q’%%I e@ta.te%gl;;r’]leé. 17

Mealy Machine

 Mealy Machine: outputs depend on state and inputs.

architecture mealy arch of fsm 1is
signal s: bit; -- internal state

begin
process (INX, s) Combinational Logic
begin
OUTX <= (INX or s); —-- output

end process;
process (CLOCK, RESET)
begin

1f RESET = '1'" then s <= '0';

elsif rising edge (CLOCK) then

s <= not (INX and s); —-- feedback

end 1f;
end process;
end mealy arch;

CENG3430 Lec05: Finite State_l\/lachines 18

Sequential Logic

Rule of Thumb: VHDL Coding Tips

@ Maintain the internal state(s) explicitly

@ Separate combinational and sequential logics

— Write at least two processes: one for combinational logic,
and the other for sequential logic
« Maintain the internal state(s) using a sequential process
 Drive the output(s) using a combination process

® Keep every process as simple as possible
— Partition a large process into multiple small ones

@ Put every signal (that your process must be
sensitive to its changes) in the sensitivity list.

® Avoid assigning a signal from multi-processes
— It may cause the “multi-driven” issue.

CENG3430 LecO05: Finite State Machines 19

Outline

« Examples of FSM
— Up/Down Counter
— Pattern Generator

CENG3430 LecO05: Finite State Machines 20

Example 1) Up/Down Counter

 Up/Down Counters: Generate a sequence of
counting patterns according to the clock and inputs.

entity counter is
port (CLK: 1in std logic;
RESET: in std logic;
COUNT: out std logic vector (3 downto 0));
end counter;
architecture counter arch of counter is

signal s: Std_logiQ;Gector(B downto 0); -- internal state
begin
COUNT <= s; -- output Combinational Loaic
[(CLK, RESET) Sequential Logic
1f(RESET = '1') then s <= "0000";
else

if (rising edge (CLK)) then
s <=s + 1; -- feedback
end if;
end 1f;
end process;

end counter arch;
CENG3430 LecO05: Finite State Machines 21

 Pattern Generator: Generates any pattern we want.
— Example: the control unit of a CPU, traffic light, etc.

« Given the following machine of 4 states: A, B, C and D.

— The machine has an asynchronous RESET, a clock signal
CLK and a 1-bit synchronous input signal INX.

— The machine also has a 2-bit output signhal OUTX.
CENG3430 Lec05: Finite State Machines 22

Example 2) Pattern Generator (2/3)

when B =>
if INX = '1l' then s <= D;
else s <= C; end 1if;

B when C =>

OUTX: out STD IOGIC VECTCR(1 downto 0)); if INX = 'l' then s <= C;

library IEEE;

use IEEE.std logic 1lo4.all;
entity pat gen is port (

RESET, CLOCK, INX: in STD LOGIC;

end pat gen;
architecture arch of pat gen 1s
type state type is (A,B,C,D);

signal s: state type; -- state
begin
gégiiss(CLOCK, RESET) Sequentigl
if RESET = '1l' then Logic
s <= A;
elsif rising edge (CLOCK) then
——- feedback
case s 1s
when A =>

if INX = '1l' then s <= A;
else s <= B; end if;

CENG3430 LecO05: Finite State Machines

else s <= A; end 1if;

when D =>

if INX = '1l' then s <= C;
else s <= A; end if;

end case;
end if;
end process;
process (s)
begin
case s 1is
when A => OUTX <=
when B => OUTX <=
when C => OUTX <=
when D => OUTX <=
end case;
end process;
end arch;

Combinational

Logic
"01";
"11";
"10";
"00";

23

Example 2) Pattern Generator (3/3)

« Encoding methods for representing patterns/states:
— Binary Encoding: Using N flip-flops to represent 2N states.
* Less flip-flops but more combinational logics

— One-hot Encoding: Using N flip-flops for N states.
» More flip-flops but less combination logic

— Xilinx default seeting is one-hot encoding.
« Change at synthesis < options

* http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.html

CENG3430 LecO05: Finite State Machines 24

Rule of Thumb: VHDL Coding Tips

@ Maintain the internal state(s) explicitly

@ Separate combinational and sequential logics

— Write at least two processes: one for combinational logic,
and the other for sequential logic
« Maintain the internal state(s) using a sequential process
 Drive the output(s) using a combination process

® Keep every process as simple as possible
— Partition a large process into multiple small ones

@ Put every signal (that your process must be
sensitive to its changes) in the sensitivity list.

® Avoid assigning a signal from multi-processes
— It may cause the “multi-driven” issue.

CENG3430 LecO05: Finite State Machines 25

Summary

* Finite State Machine (FSM)

— Clock Edge Detection
« “if” statement vs. “wait until” statement
* rising edge (CLK) VvS. CLK'event

— Direct Feedback Path

* Types of FSM
— Moore vs. Mealy

« Examples of FSM
— Up/Down Counter
— Pattern Generator

CENG3430 LecO05: Finite State Machines

26

