
CENG3430 Rapid Prototyping of Digital Systems

Lecture 05:

Finite State Machine

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Recall: Combinational vs. Sequential

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential (i.e., process) statements.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 2

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Processor

Address Bus
(Latches)

Recall: Typical Processor Organization

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 3

ALU
(Multiplexer,

State Machine)

Control Unit
(Decoder,

State Machine)

Registers
(Flip-flops)

Data Bus
(Bi-directional Bus)

Memory

How to maintain the internal state explicitly?

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 4

• Finite State Machine (FSM): A system jumps from

one state to another:

– Within a pool of finite states, and

– Upon clock edges and/or input transitions.

• Example of FSM: traffic light, digital watch, CPU, etc.

• Two crucial factors: time (clock edge) and state (feedback)

Finite State Machine (FSM)

CENG3430 Lec05: Finite State Machines 5

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 6

Clock Edge Detection

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec05: Finite State Machines 7

• rising_edge() function in std_logic_1164 library

– It results TRUE when there is an edge transition in the signal

s, the present value is '1' and the last value is '0'.

– If the last value is something like 'Z' or 'U', it returns a FALSE.

• The statement (clk'event and clk='1')

– It results TRUE when the there is an edge transition in the

clk and the present value is '1'.

– It does not see whether the last value is '0' or not.

CENG3430 Lec05: Finite State Machines 8

rising_edge(CLK) vs. CLK'event

http://vhdlguru.blogspot.hk/2010/04/difference-between-risingedgeclk-and.html

Use rising_edge() / falling_edge() with “if” statements!

CENG3430 Lec05: Finite State Machines

When to use “wait until” or “if”? (1/2)

• Synchronous Process: Computes values only on

clock edges (i.e., only sensitive/sync. to clock signal).

– Rule: Use “wait-until” or “if” for synchronous process:

process

begin

wait until clk='1';

…

end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)

begin

…

if(rising_edge(clk))

…

end process 9

Usage

of
“wait

until”

Usage

of
“if”

 The first statement must be wait until.

 NO sensitivity list implies that there is one clock signal.

 The clock signal must be in the sensitivity list.

 NOT necessary to be the first line.

When to use “wait until” or “if”? (2/2)

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Rule: Only use “if” for asynchronous process:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec05: Finite State Machines 10

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

Simply use “if” statements for both sync. and async. processes!

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 11

Feed-forward and Feedback Paths

• So far, we mostly focus on logic with feed-forward (or

open-loop) paths.

• Now, we are going to learn feedback (or closed-loop)
paths─the key step of making a finite state machine.

CENG3430 Lec05: Finite State Machines 12

Controller Plant

Sensor

Direct Feedback Path

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity feedback_1 is

port(a,clk,reset: in std_logic;

c: buffer std_logic);

end feedback_1;

architecture feedback_1_arch of feedback_1 is

begin

process(clk, reset) -- async.

begin

if reset = '1' then c <= '0';

elsif rising_edge(clk) then

c <= not(a and c);

end if;

end process;

end feedback_1_arch ;

CENG3430 Lec05: Finite State Machines 13

 Signal c forms a closed loop.
• not(a and c) takes effect at

the next rising clock edge.
• The current c holds for one cycle.

 “<=” is like a flip-flop.

a c

clk

D Q

reset

Internal Feedback: inout or buffer

• Recall (Lec01): There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

• Both buffer and inout can be read back internally.

– inout can also read external input signals.
CENG3430 Lec05: Finite State Machines 14

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 15

Types of Finite State Machines

• Moore Machine:

– Outputs are a function of

the present state only.

• Mealy Machine:

– Outputs are a function of

the present state and

the present inputs.

CENG3430 Lec05: Finite State Machines 16

Even

Odd

Reset

0/0 1/1

1/1

0/0

State

/

input

/

output

Even

0

Odd

1

Reset

0 1

1

0

https://www.slideshare.net/mirfanjum1/moore-and-mealy-machines-29553482

Suggestion: Maintain the internal state explicitly!

Combinational Logic

Sequential Logic

architecture moore_arch of fsm is

signal s: bit; -- internal state
begin
process (s)
begin
OUTX <= not s; -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then
s <= not (INX and s); -- feedback

end if;
end process;

end moore_arch;

Moore Machine

• Moore Machine: outputs rely on present state only.

CENG3430 Lec05: Finite State Machines 17

Combinational Logic

Sequential Logic

architecture mealy_arch of fsm is
signal s: bit; -- internal state
begin
process (INX, s)
begin
OUTX <= (INX or s); -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then

s <= not (INX and s); -- feedback
end if;

end process;
end mealy_arch;

Mealy Machine

• Mealy Machine: outputs depend on state and inputs.

CENG3430 Lec05: Finite State Machines 18

Rule of Thumb: VHDL Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec05: Finite State Machines 19

Outline

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 20

Combinational Logic

Sequential Logic

Example 1) Up/Down Counter

CENG3430 Lec05: Finite State Machines 21

• Up/Down Counters: Generate a sequence of

counting patterns according to the clock and inputs.
entity counter is
port(CLK: in std_logic;

RESET: in std_logic;
COUNT: out std_logic_vector(3 downto 0));

end counter;

architecture counter_arch of counter is
signal s: std_logic_vector(3 downto 0); -- internal state
begin

COUNT <= s; -- output
process(CLK, RESET)
begin

if(RESET = '1') then s <= "0000";
else
if(rising_edge(CLK)) then

s <= s + 1; -- feedback
end if;

end if;

end process;
end counter_arch;

Example 2) Pattern Generator (1/3)

• Pattern Generator: Generates any pattern we want.

– Example: the control unit of a CPU, traffic light, etc.

• Given the following machine of 4 states: A, B, C and D.

– The machine has an asynchronous RESET, a clock signal

CLK and a 1-bit synchronous input signal INX.

– The machine also has a 2-bit output signal OUTX.
CENG3430 Lec05: Finite State Machines 22

A
OUTX=“01”

B
OUTX=“11”

C
OUTX=“10”

D
OUTX=“00”

INX=‘0’

INX=‘0’

INX=‘1’

INX=‘1’INX=‘0’

INX=‘1’

INX=‘1’

RESET
RESET=‘1’ INX=‘0’

Sequential

Logic
Combinational

Logic

Example 2) Pattern Generator (2/3)

CENG3430 Lec05: Finite State Machines 23

library IEEE;

use IEEE.std_logic_1164.all;

entity pat_gen is port(

RESET,CLOCK,INX: in STD_LOGIC;
OUTX: out STD_LOGIC_VECTOR(1 downto 0));

end pat_gen;

architecture arch of pat_gen is

type state_type is (A,B,C,D);
signal s: state_type; -- state
begin

process(CLOCK, RESET)

begin

if RESET = '1' then

s <= A;
elsif rising_edge(CLOCK) then

-- feedback
case s is
when A =>
if INX = '1' then s <= A;
else s <= B; end if;

when B =>
if INX = '1' then s <= D;
else s <= C; end if;

when C =>
if INX = '1' then s <= C;
else s <= A; end if;

when D =>
if INX = '1' then s <= C;
else s <= A; end if;

end case;
end if;

end process;

process(s)
begin

case s is
when A => OUTX <= "01";
when B => OUTX <= "11";
when C => OUTX <= "10";
when D => OUTX <= "00";

end case;
end process;

end arch;

Example 2) Pattern Generator (3/3)

• Encoding methods for representing patterns/states:
– Binary Encoding: Using N flip-flops to represent 2N states.

• Less flip-flops but more combinational logics

– One-hot Encoding: Using N flip-flops for N states.

• More flip-flops but less combination logic

– Xilinx default seeting is one-hot encoding.

• Change at synthesis  options

• http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.html

CENG3430 Lec05: Finite State Machines 24

Rule of Thumb: VHDL Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec05: Finite State Machines 25

Summary

• Finite State Machine (FSM)

– Clock Edge Detection

• “if” statement vs. “wait until” statement

• rising_edge(CLK) vs. CLK'event

– Direct Feedback Path

• Types of FSM

– Moore vs. Mealy

• Examples of FSM

– Up/Down Counter

– Pattern Generator

CENG3430 Lec05: Finite State Machines 26

